
The 13th International Renewable Energy Congress (IREC 2022) 

978-1-6654-8897-6/22/$31.00 ©2022 IEEE 
 

Short-Term Wind Power Forecasting by a Long Short 
Term Memory Ensemble Approach 

Geovanny Marulanda 

Institute for Research in Technology (IIT) 
ICAI School of Engineering, Comillas Pontifical University 

Madrid, Spain 
geovanny.marulanda@iit.comillas.edu 

Jenny Cifuentes 

ICADE, Faculty of Economics and Business 
Administration; Department of Quantitative Methods 

Universidad Pontificia Comillas,  
28015, Madrid, Spain 

jacifuentes@comillas.edu 

Antonio Bello  

Institute for Research in Technology (IIT) 
ICAI School of Engineering, Comillas Pontifical University 

Madrid, Spain 
antonio.bello@iit.comillas.edu 

Javier Reneses 

Institute for Research in Technology (IIT) 
ICAI School of Engineering, Comillas Pontifical University  

Madrid, Spain  
javier.reneses@iit.comillas.edu 

 
 

 

Abstract— Wind power plants have attracted increasing 

attention during the last decades due to their environmental and 

economic benefits. However, the wind resource is inherently 

unpredictable, bringing important challenges to the stable and 

safe operation of the power grid. In this context, various 

computational and statistical approaches have been reported in 

the literature to perform short-term forecasting of wind power 

generation, and more efficient strategies are still demanded. In this 

paper, a hybrid framework that includes a statistical pre-

processing stage with an enhanced deep learning (DL)-based 

strategy is proposed to address the limitations of reported 

forecasting methodologies to predict multi-seasonal wind power 

time series. The integrated approach applies a suitable 

transformation to obtain a normal distribution of data and 

removes multiple seasonalities in wind power time series. 

Subsequently, it supplements a set of stacked Long Short Term 

Memory (LSTM) Recurrent Neural Network (RNN) models for 

each month of the year. The proposed approach is validated using 

real hourly wind power data from the Spanish electricity market 

for the period 2008-2019. A comparative analysis with a well-

established DL-based model shows the superior performance of 

the proposed forecasting method. The experimental evaluation is 

conducted for 1-3 hours ahead of wind power predictions. 

Keywords—Long Short Term Memory; Deep Learning; Wind 

Power Forecasting; Recurrent Neural Networks; Time Series 

Decomposition 

I.  INTRODUCTION 

Wind power generation has drawn an increasing interest 
since it has been recognized as a promissory renewable energy 
alternative to supplement traditional fossil energy. Although 
wind power has become one of the fastest-increasing energy 
sources, its variability and uncertainty bring important 
challenges to the stable and safe operation of the power grid [1], 
[2]. 

In this regard, short-term forecasting has been considered a 
critical approach to solving the problem. As such, the accurate 
estimation of wind power can improve its utilization, increase 

the reliability of the power system, reduce operation costs and 
enhance the development of efficient load management 
schemes. In addition, from the firms' point of view, wind power 
prediction is useful to mitigate the risk exposure and design 
energy portfolios for the short-term market. 

Different strategies have been developed in this research 
field during the last few years. In particular, wind power 
forecasting strategies can be divided into three categories based 
on their modeling approach: physical methods, statistical and 
soft computing algorithms [3]. Physical methods mainly 
establish a prediction model based on a set of physical laws 
which characterize the corresponding meteorological process 
[4]. These approaches tend to be very complex and strongly 
dependent on the analyzed location. Statistical approaches, in 
contrast, model the relationships between the historical and the 
future power data through processing strategies for time 
sequences. These methods mainly include time series-oriented 
approaches such as autoregressive (AR) and autoregressive 
integrated moving average (ARIMA) models, GARCH models, 
among others. Experimental results associated with these 
methods report a prediction accuracy typically higher compared 
to physical methods. Finally, soft computing algorithms 
characterize the relationship between the inputs and the outputs, 
using artificial intelligence strategies such as Genetic 
Algorithms, Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Random Forest (RF), and K-Nearest 
Neighbors (K-NN), among others [5]. Research on this topic has 
reported a better performance for these techniques compared to 
the classical physical and statistical time series models in the 
case of short-term wind power predictions [6]. 

Although interesting results have been achieved through the 
previously described methods, they are strongly dependent on 
pre-treatment strategies (Phase Space Decomposition [7], 
Empirical Mode Decomposition [8],  etc.), where the hyper-
parameters selection required during the decomposition could be 
a complex process leading to poor adaptability. In addition, long 
short-term dependencies of the time sequences are not fully 
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studied. In order to overcome these limitations, deep learning 
(DL) strategies have been implemented in this field. 
Specifically, Recurrent Neural Networks (RNN) have been 
proposed to model the relationships among samples of the time 
sequences. In this context, gated RNNs (Long Short Term 
Memory -LSTM-, in particular) include memory units that allow 
controlling the flow of the relevant information associated with 
the relation among samples. Based on this development, several 
researchers have reported the implementation of hybrid methods 
that take advantage of this algorithm. Although most of them 
have reported interesting results at the local level, they are 
getting harder to extrapolate, do not incorporate long-term 
dependencies models and, report a high complexity. 

In a first approach, Dong et al. presented the implementation 
of LSTM networks to forecast wind power up to 48 hours ahead, 
showing the increase of the error rates for each prediction step 
[9]. LSTM networks show a significantly better short-term 
forecasting performance than other classical techniques. 
However, forecast errors are accumulated when steps ahead are 
increasing due to the inherent recursive forecasting mechanism. 
Alternatively, Xu and Xia introduced an adaptive LSTM 
network, where a genetic algorithm carried out the optimization 
process of the hyper-parameters for the predictive model [10]. 
In order to reduce the prediction errors, Han et al. evaluated a 
Variational Mode Decomposition-Long Short-Term Memory 
(VMD-LSTM) prediction approach [11], where the wind power 
data were first decomposed into three constituent modes, named 
the long-term, the fluctuation, and the random components. 
Finally, LSTM networks predict each component up to 3 steps 
ahead. It is important to note that both long and short-term 
components are modeled using the same DL-based approach in 
this paper. Wilms  et al., on the other hand, presented a 
convolutional LSTM strategy to model spatial and temporal 
dependencies to analyze wind speed and wind direction data 
from neighboring points [12]. In the same line, a recent research 
developed by Ko et al. involved the analysis of bidirectional 
LSTM networks for wind power prediction [13].  

Considering the successful results of LSTM networks to 
model long short-term dependencies and their difficulties in 
characterizing long-term relationships, this paper presents a 
hybrid approach to predict short-term wind power. The first 
analysis allows taking advantage of deterministic pattern 
recognition, identifying the long-term dynamics and the changes 
with a fixed and known periodicity of the wind power time 
series. This process provides a better understanding of data 
dynamics and reduces model complexity by extracting an 
irregular component. The second stage involves a month 
segmentation to better model the inner behavior, where the 
resulting time series are then processed by LSTM networks. This 
final forecasting approach allows to model time-series non-
linearities, considering the high levels of abstractions provided 
by the associated deep structure. In this way, the ensemble 
strategy described in this work allows using individual 
advantageous effects from statistical and computational 
perspectives to improve the reported results in wind power 
forecasting. Based on real hourly wind power data from the 
Spanish electricity market, the effectiveness and accuracy of the 
method are verified. Results show an improvement in the 
accuracy rates for the strategy described in this work. 

The following section describes the conceptual background 
of the forecasting method. Likewise, Section 3 presents the 
details of the strategy proposal of this work and its methodology. 
Section 4 reports the experimental design and the numerical 
validation, and Section 5 concludes and outlines future 
directions. 

II. Overall Forecasting Framework 

 
This section presents a detailed description of the different 

parts of the proposed methodology. First, the details associated 
with the processing and modeling of long-term deterministic 
patterns are described. Then, the long-short term dependencies 
are represented through a DL-based approach, namely LSTM 
RNNs. The final results involve the ensemble analysis of both 
approaches. 

A. Statistical Analysis Methodology 

Firstly, based on the assumption that wind power time series 
data are usually non-normal, a set of transforms will be studied, 
following the recently proposed approach developed for a long 
term scenarios generation in [14], to provide time series with a 
constant marginal variance, and normal distribution. The most 
popular transformations are defined in Table I. 

TABLE I: NORMALIZATION TRANSFORMS  

Box Cox Yeo Johnson 

���; �� = 1	
� ���	 +1	��log ��� 

���; �� = 1	
�,��� �� + 1�	 − 1� +  
1	��,��� log�� + 1� + 1	
�,��� �1 − ����	 − 1� − 2  

+1	��,��� −log�1 − �� 
Ordered Quantile 

(OQ) 
Arcsinh 

���� = Φ�� ��� !��� − 12"# �$ℎ��� & 
���� = log �x + (�� + 1� 

 

Where x refers to the original data, the parameter λ is 
adjusted in both cases via maximum likelihood,  Φ represents 
the standard normal of the cumulative distribution function, and 
rank(*) and length(*) are the observation's rank, and the number 
of samples, respectively. 

Subsequently, the resulting time series is decomposed into key 
components to model their deterministic patterns and 
characteristic dynamics. As such, the Seasonal-Trend 
decomposition using Loess (STL) is carried out to obtain the 
seasonal and remainder sequences of the wind power time series 
[15]. Firstly, taking into account an additive model, the hourly 
wind power time series )* is represented as the addition of three 
components )* =  +* + ,* + -*. with +*, ,*, and -*  denoting 
the trend, the seasonality, and the remaining components, 
respectively. STL is commonly defined as a filtering method to 
decompose time series, which applies a series of smoothing 
operations by means of a locally weighted regression. Then, 
during the weighted polynomial regression fitting, the weights 
decrease based on distance values from the closest neighbor 
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[16]. As a result, the estimation of the smoothed time series )./  
is characterized by: 

 )./ = 0 12,3$23             4 = 1, … ,  ,6
3��  

 

(1) 

where 12,3 is the 7 + 1 dimensional least squares estimation 

for the weighted regression, $23   
is the 7 + 1 dimensional array 

of the period time, 8 is the amount of time lags up to the 
maximum, represented by the smoothing parameter   and 7 
denotes the corresponding polynomial degree. Based on this 
configuration, the time series is recurrently fitted until the 
seasonality and trend components are stable. This stage involves 
a moving averages strategy in conjunction with the Loess 
Smoothing method. Finally, each component is extracted from 
the time series, according to: 

 +* = +*9��:9��, ,* = ,*�:9��, -* = )* − +* − ,* (2) 

 with ! being the number of iterations in the procedure. The 
most relevant advantage of this approach, in comparison with 
other decomposition strategies, is its strong resilience to outliers 
present in the time series, providing robust decomposed sub-
series. In addition, STL can manage multi-seasonal time series 
with any seasonal frequency greater than one, not limited to only 
monthly or quarterly frequencies, such in alternative approaches 
[17]. A detailed explanation of this algorithm can be found in 
[15]. The resulting remainder time series -* are then segmented 
for each month of the year and correspondingly analyzed by 
LSTM RNNs. 

B. Long Short Term Memory (LSTM) Recurrent Neural 

Networks (RNN) 

LSTM RNNs have been proposed to obtain a long-term 
dependencies model and the optimal time lag required during the 
time series analysis. In comparison with classical RNN, the 
memory block has been modified to control the flow of 
information. As such, a series of multiplicative gated units have 
been included inside the block. These gates can learn to allow or 
prevent certain data propagation, solving the classical 
vanishing/exploding error associated with the traditional RNNs. 
Figure 1 shows an LSTM memory unit and its corresponding 
internal structure. 

 

Fig.  1: Internal Structure of the LSTM block 

As it can be seen, the LSTM architecture contains three gate 

structures, the input gate 8, the forget gate ;, and the output gate <. As such, 8 allows the information to be stored in each 

memory cell without any perturbation, < protects other units to 

be perturbed by irrelevant information, and ; memory unit 
allows to forget irrelevant information. The corresponding 
activation functions for each gate are defined as: 

 
 8* = =�>2 . �* + @2 . ℎ*���,    ;* = =A>B . �* + @B. ℎ*��C <* = =�>D. �* + @D. ℎ*���,   

(3) 

for each moment $, and a given input �*, the hidden state ℎ* is 
calculated and updated by: 

 
 �* = $� ℎA>E. �* + @E. ℎ*��C,    F* = F*��. ; + �. 8, ℎ* = tanh�F*� . <*,   

(4) 

where > and @ are weight matrixes, tanh and = are 

activation functions, and $ − 1 represents the former moment. 
New approaches reported in the literature have proposed to 
stack several LSTM units, achieving more accurate and 
efficient results [18], [19]. 

III. PROPOSED HYBRID FORECASTING APPROACH 

Based on the framework described in the previous section, 
the dynamical model proposed in this paper involves a 
combination of statistical decomposition and segmentation 
techniques and a computational architecture centered on stacked 
RNNs for each monthly segmented sequence to forecast time 
series with multiple seasonal patterns. In this context, our 
proposal can be divided into four different stages: 

1. Long Term Dependencies Extraction: Taking into 
account the non-normality characteristic of real wind power time 
series. The first pre-processing stage involves the normalization 
of the skewed data. As such, four transformations formulated in 
Table 1, are applied to the data, and the transformation with the 
best performance is finally selected for the analysis. Based on 
the selected normalization transform, the resulting time series is 
represented as a combination of trend, seasonal, and remainder 
components by means of the implementation of the STL 
transform described in Section II-A. During the decomposition 
process, two seasonality frequencies are considered for this wind 
power time series: annual (8760 hours) and daily (24 hours). In 
addition, an additive decomposition for the wind power time 
series is consequently explored. After the decomposition process 
is completed, the remainder component is extracted to continue 
the analysis. 

2. Time Series Segmentation: Pre-processed results 
associated with the remainder values, obtained from the real-
time series when seasonal and trend components are subtracted, 
are monthly segmented to improve the accuracy of the wind 
power time series prediction for each monthly evaluation. 

3. Stacked LSTM RNN: A stacking architecture to train an 
LSTM RNN is proposed to extract the remaining dependencies 
for each month. In this stage, the same network configuration is 
preserved, weights will change based on the time series training 
process carried out for each month. 

4. De-normalization and Trend and Seasonal Effect 
Inclusion: Final predictions are obtained after an inverse 
transformation, associated with the de-normalization process 
and the addition of the trend and seasonal effect to the wind 
power time series for each respective month. 
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IV. EXPERIMENTAL RESULTS 

To carry out the validation, firstly, the wind power data and 
the evaluation measures to be used in the study are defined and 
analyzed. Then, the performance of the proposed forecasting 
model is validated on real wind power time series for 1, 2, and 3 
steps ahead. All the experimental analyses are performed in the 
R (v. 3.6.2) and Python (v. 3.7.4) environment on a 3.5 GHz PC 
with process Intel Xeon E3-1246 and 32 GB RAM. 

A. Evaluation Metrics 

The performance evaluation of the proposed approach is 
performed by comparing the Root Mean Square Error (RMSE), 
the Mean Absolute Percentage Error (MAPE), and the Mean 
Absolute Error (MAE), defined by: 
 

 -K,L = M1N 0��O − �PO��Q
O��  

 

(5) 

 

 KRSL = 1N 0 |�O − �PO|�O × 100%Q
O��  

 

(6) 

 KRL = 1N 0|�O − �PO|,Q
O��  

 

(7) 

where N is the number of predicted samples, �O and �PO are 
the real value and predicted values, respectively. RMSE has 
been widely used in meteorological variables forecasting 
because it satisfies the objectivity and symmetry condition.  The 
MAE metric, on the other hand, weighs all values equally and 
does not give extreme forecasting events any extra weight. 
Finally, MAPE has been proposed as the most popular unit-free 
accuracy metric for predicting problems, and several textbooks, 
M-competition, and the prior literature motivate its use [20]. 

B. Input Data 

Experiments involved in this study use real hourly wind 
power data from 2008-2019 from the Spanish electricity market.  
Table II presents the sample descriptive statistics corresponding 
to the real-time series analyzed in this work. 

TABLE II:  DESCRIPTIVE STATISTICS OF THE INITIAL TIME SERIES 

Min Max Mean SD Skewness Kurtosis 

0.0093 0.7704 0.2469 0.1394 0.7419 -0.0290 

 Based on the skewness calculation (positive), the wind 
power time series analyzed are not normal, showing a right-
skewed distribution. Kurtosis value (less than three) indicates a 
platykurtic distribution (flatter than a normal distribution). A 
normalization transform is implemented on the time series based 
on this dynamics analysis. 

C. Statistical Preprocessing Results 

To normalize data and stabilize variance in the real-time 
series presented in this work, four widely implemented 
transforms are explored (Table I). To select the best 
transformation for the analyzed time series, the Pearson P 

statistic (divided by its degrees of freedom) is calculated. This 
normalization measure is selected because it allows to compare 
between transformations as an absolute distance of the 
departure of normality, and it is a relatively interpretable 
goodness-of-fit measure. In this case, if the data is close to a 
normal distribution, this measure will be close to 1. Results 
found for this real-time series for each transformed and the non-
transformed (NT) data are summarized in Table III. Results 
show a better-normalized distribution (closer to 1) for the 
transformed data using the Ordered Quantile approach. 
Statistical metrics are shown in Table IV. 

TABLE III:  PEARSON STATISTICS 

NT Box Cox Yeo Johnson OQ ArcSinh 

23.955 3.767 8.724 1.125 21.368 

TABLE IV:  DESCRIPTIVE STATISTICS OF THE NORMALIZED TIME SERIES 

Min Max Mean SD Skewness Kurtosis 

-4.420 4.420 0.000 1 0.000 -0.001 

 
This transformed data is then decomposed to remove its 

trend and seasonal components. As such, the STL 
decomposition approach (Section II-A) is applied to the data. 

D. Time Series Segmentation Results 

Remainder values extracted from the previous 
decomposition stage are the inputs of the RNN-based 
forecasting method described in this work. As such, in order to 
fine tune the RNN implemented to predict the wind power 
values, a monthly characterization of the time series is 
proposed. In this case, the remainder component is monthly 
segmented by generating 12 training/testing datasets that will 
customize the RNN weights for each month of the year. It is 
important to note that the RNN architecture will be preserved 
for every month, just weights will change to characterize the 
dynamics of every month. Twelve datasets are consequently 
structured with 1, 2, and 3 forecasting steps ahead for 
validation. Correspondingly, the final datasets are divided into 
training and testing data with two-thirds and one-third of the 
complete datasets. 

E. Stacked RNN Prediction and Final Forecasting Results 

The data for the sequence prediction problem studied in this 
paper needs to be scaled [0 to 1] when training neural networks, 
such as LSTM RNN. The main reason lies in the fact that when 
a network is fit on non-scaled data, the learning and 
convergence of the RNN can slow down and, in some cases, 
prevent the network from effectively learning the time series 
dependencies. As such, an iterative process with the whole data 
was first implemented to find the architecture with the best 
performance for an LSTM RNN. Two stacked networks were 
developed to model the remaining values of the wind power 
time series. During the RNNs training, the number of hidden 
neurons for each network was determined by cross-validation 
to be in the range of 16, 32, or 64 neurons. As a result, the 
number of hidden neurons that provide the best performance on 
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validation data was finally selected (32 for the first RNN and 
16 for the second one). Hidden neurons are activated by the 
function ReLU (Regular Linear Unit), and recurrent output 
neuron uses a hard sigmoid. Each neural network is trained 
using the Adam optimization algorithm in conjunction with a 
cross-validation-based early stopping strategy to prevent over-
fitting. In addition, the Mean Square Error (MSE) is the loss 
function used to be minimized. Considering this configuration, 
the training process with monthly segmented time series is 
carried out for each month. 

Results are correspondingly re-scaled. Subsequently, the 
seasonal and trend components, extracted in Section IV-C, are 
used to estimate future values through a naive seasonal method 
and a combination of STL and Exponential Smoothing (ETS), 
respectively. This selection is widely implemented based on the 
successful reported results at analyzing seasonal time series 
with non-linear trend-cycles [21]. These values are 
incorporated, and as the last step, inverse Ordered-Quantile 
transform is applied to calculate the final prediction values. 
RMSE, MAPE and MAE errors are calculated during the 
validation process for each month for 1, 2 and 3 steps ahead 
(See Figures 2, 3 and 4, respectively). Based on the error values 
shown in the figures, it is possible to see that February, April, 
August, and November are the months with more difference 
errors for the three evaluation measures defined in this work, 
for the one-step ahead case. In contrast, July is the month that 
preserves a small error for the three evaluation measures. This 
distribution changes for two and three steps ahead, where 
March and December, and April and October are the months 
with more variability, respectively. It is important to highlight 
the error measures variability for each month, showing that the 
monthly inner dynamics are likely to be better captured by the 
proposed approach for certain specific months. In conclusion, 

small errors are found for one-step ahead (Average KRSL =5.1%�, and as it is expected, differences increase for two and 

three steps ahead (Average KRSLY = 8.2% and 12.9%, 
respectively); which is an inherent characteristic for the LSTM-
based approaches, when several steps ahead are considered. 

To investigate the effectiveness of the proposed hybrid 
model, it is compared with a stacked LSTM that will analyze 
the raw data associated with wind power in Spain. Because the 
previous LSTM architecture was selected based on the 
complete time series, the same configuration is implemented 
with two networks and 32 and 16 neurons, respectively. Results 
are summarized in Figure 5. Based on the experimental results, 
it can be observed that the proposed hybrid forecasting method 
shows superior performance compared with traditional stacked 
LSTM RNNs (5.101 % to 11.648 % for one-step-ahead MAPE 
errors), which deeply illustrates that the proposed methodology 
is a relevant DL-based alternative for short-term wind power 
forecasting. 

V. CONCLUSIONS 

Considering the increasing influence of wind energy, wind 
power forecasting methodologies have become crucial for the 
safety management and operation of power systems. This study 
proposes an ensemble methodology based on statistical pre-

processing methodologies and DL-based algorithms to achieve 
highly accurate short-term forecasting results. A combination 
of OQ Normalization, STL decomposition, and LSTM RNN 
has been implemented as an alternative solution. This last 
algorithm has been fine-tuned with different training datasets 
associated with the segmentation for each month of the year. To 
validate this approach, it has been compared with a DL-based 
traditional strategy: the LSTM RNN, which has been recently 
used to forecast these characteristic time series. Then, a stacked 
LSTM with two RNNs is implemented, as in the last step of our 
proposed approach. For this process, real hourly wind power 
data from the Spanish electricity market has been analyzed to 
forecast one, two, and three steps ahead. Experiments results 
indicate that the proposed methodology can achieve more 
accurate wind power forecasting results than the single model.  
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Fig.  2: One-step ahead forecasting errors 

 

 

 

 

 

 

 

 

Fig.  3: Two-step ahead forecasting errors 

 

 

 

 

 

 

 

 

 

Fig.  4: Three-step ahead forecasting errors 

 

 

 

 

 

 

 

 

 

 

Fig.  5: Error comparison with a stacked LSTM approach 
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